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The novel approach of using node-based, second order polynomial shape functions to substitute the degrees of freedom corresponding
to slave nodes by a linear combination of those corresponding to master nodes is shown to be a powerful and accurate tool to couple
nonconforming meshes. This method is investigated and proposed to be used to take moving domains, especially rotating parts into
account. In addition, it is shown that, in comparison to consistent meshes, the number of finite elements can be decreased without
any loss of accuracy.
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I. INTRODUCTION

THE coupling of meshes with different resolution is a
known problem in electromagnetic field analysis. A typ-

ical application requiring such coupling is the analysis of
electric machines with the relative movement of the stator
and rotor domains taken into account. One possibility to over-
come the problem is to re-mesh the moving domain once the
mesh becomes too distorted due to the rotor movement. This
method exhibits extensive pre-processing as well as enormous
computational costs in addition to the drawback of distorted
elements and loss of accuracy [1]. An alternative is to allow
the two meshes to become nonconforming with hanging nodes.
Then, in case of conducting surfaces, the method of Lagrange
multipliers (LM) has been successfully implemented for 2 D
problems [1], and for 3 D problems [2],[3]. However, the
resulting matrix is not positive definite and ill-conditioned and
therefore the equations resulting from the LM method are
difficult to solve by iterative techniques like the incomplete
Cholesky - conjugate gradient (ICCG) method [4]. The inter-
polation method by using master and slave edges, has proved
its efficiency for first order tetrahedral and hexahedral edge
elements [3],[5] and [6].

The novel approach of this paper is to carry out the simple
interpolation method for slave nodes by master nodes with
node-based, second order polynomial shape functions. The
resulting matrix is positive definite, symmetric and the ICCG
method can be applied. By a simple electrostatic test problem,
the accuracy and the superiority of this method is shown.

II. NONCONFORMING MESH COUPLING

The Dirichlet-Neumann boundary problem for the electro-
static field in a closed domain Ω is investigated:

−div(εgradV ) = ρ in Ω (1a)
V = U0 on ΓE , (1b)

εgradV · n = ε
∂V

∂n
= σ on ΓD . (1c)

According to the Dirichlet boundary condition (1b) and tak-
ing the properties of the node-based, second order polynomial
shape functions Ni into account, it is sufficient to define the
approximation to V as Vn =

∑
ViNi where Vi are the nodal

values.
This approach can be taken to introduce the nonconforming

mesh connection by defining master nodes ml and slave nodes
sk on an interface where two meshes become nonconforming,
the potential of a slave node V (slave) can be substituted by a
linear combination of its corresponding master node potentials
V

(master)
l :

V
(slave)
k = V (r

(slave)
k ) =

lmaster,k∑
l=1

cklV
(master)
l (2)

where ckl are appropriate coupling factors. Note that these
factors are the node-based, second order polynomial shape
functions Nl of the corresponding master nodes evaluated at
the position of the slave node.

Taking this interpolation into account, the approximation can
be written as

Vn(r) =

lnormal∑
l=1

V
(normal)
l N

(normal)
l (r)+

+

lmaster∑
l=1

V
(master)
l

(
N

(master)
l (r) +

lslave∑
k=1

clkN
(slave)
k (r)

)
(3)

where the superscripts stand for the normal (i.e. neither master
nor slave), the master and the slave nodes, respectively. This
leads to following Ritz-Galerkin equations:

lnormal∑
k=1

V
(normal)
k

∫
Ω

gradN
(normal)
i ε gradN

(normal)
k dΩ+

+

lmaster∑
k=1

V
(master)
k

∫
Ω

gradN
(master)
i ε

(
gradN

(master)
k +

+

lslave∑
l=1

ckl gradN
(slave)
l

)
dΩ = 0 ,

(4)



lnormal∑
k=1

V
(normal)
k

∫
Ω

(
gradN

(master)
i +
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j=1

cij gradN
(slave)
j

)

ε gradN
(normal)
k dΩ +
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V
(master)
k
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gradN
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(
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ckl gradN
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k
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dΩ = 0 .

(5)
Note that the mixed terms including both master and slave

shape functions do not appear, since the support of the two
types of shape functions are disjunct.

III. NUMERICAL APPLICATION

The model of an air insulated parallel capacitor with an
inset made of a ceramic medium is investigated, by taking
symmetries into account (see Fig. 1(a)). To validate the applied
method, both a conforming and a nonconforming mesh model
are built. The electrode of the capacitor has the potential of
10 V whereas the x − y plane is set to the potential 5 V.
The ceramic medium has a relative permittivity of εr = 2.4 .
The conforming model consisting of 90720 finite elements is
shown in Fig. 1(b). Note that, the mesh size is a compromise
between the mesh size of the high and low resolution domain of
the nonconforming model. Fig. 1(c) shows the nonconforming
mesh with a decreased number of 46656 finite elements.

line 2: (M2)
line 1: (M1)

coupling plane

(a)

(b) (c)

Fig. 1. (a) 3D view: electrode (red), ceramic inset (green) and data line (M1)
and (M2), (b) Conforming mesh of the capacitor model, (c) Nonconforming
mesh of the capacitor model.

The data shown in Fig. 2 have been taken along two lines
parallel to the z-axis (see Fig. 1(a)). Each line has been selected
in such a manner that the influence of the edges of the electrode

is negligible. The number of iterations of the conjugate gradient
(CG) method is 111 for the conforming mesh and 90 for the
nonconforming mesh.
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Fig. 2. (a) Potential V , (b) Magnitude of the z-component of the electric field
|Ez | (c) x-component of the electric field Ex, (d) y-component of the electric
field Ey

IV. CONCLUSION AND OUTLOOK

As shown in Fig 2, there is a good agreement between
the conforming and nonconforming mesh models for all com-
ponents of the electric field, as well as for the potential.
The applied method is seen to be an accurate and powerful
tool to decrease the number of finite elements. Numerical
experiences show that searching the master/slave coupling
needs additional computational resources. Further investigation
is needed in this respect. The full paper will include exhaustive
accuracy investigations, and the full set of equations for the
nonconforming mesh connection method introduced will also
be presented.
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